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Ab stract  

The great jerboa (Allactaga major), a keystone rodent of Eurasian deserts and 

steppes, is of dual conservation and epidemiological concern, being Near Threat-

ened and a natural reservoir of plague. To understand the fundamental drivers of its 

distribution and identify potential plague reservoir zones, we developed a robust 

Species Distribution Model (SDM) using a comprehensive set of climatic, soil, and 

vegetation variables across its Eurasian range. Occurrence data were refined and 

modelled using the Maxent algorithm within the ‘flexsdm’ framework, with model 

interpretation advanced via SHAP (SHapley Additive exPlanations) values. Our 

model accurately predicted the species’ known range from Eastern Europe to Cen-

tral Asia. SHAP analysis revealed that climate, rather than soil or vegetation bio-

mass, acts as the primary, range-defining filter. The three most influential predic-

tors were Precipitation of the Driest Week (Bio14), Temperature Annual Range 

(Bio07), and Minimum Temperature of the Coldest Week (Bio06), defining thresh-

olds for aridity tolerance, continentality, and hibernation survival, respectively. 

Notably, the highest-ranked variable, Bio14, which coincides with the late-winter 

(February–March) period preceding hibernation emergence, revealed a finely tuned 

ecological mechanism. The SHAP dependence plot showed a distinct non-linear 

optimum, where suitability peaks at approximately 6 mm of precipitation. This 

window likely represents the essential cue for germinating the annual ephemerals 

that form the critical post-hibernation food pulse, a link supported by a strong cor-

relation (r = 0.68) between this precipitation and April vegetation greenness 

(NDVI). This shifts the understanding of the species’ distribution from one of sim-

ple physiological tolerance to obligate ecological synchrony. Consequently, areas 

of high predicted suitability, particularly in southern and eastern Kazakhstan (e.g. 

Zhambyl, Turkistan, and Almaty oblasts), delineate a continuous ecological corri-

dor representing potential enzootic plague reservoir zones. Our SDM thus trans-

cends a predictive map to diagnose the core abiotic constraints and a key trophic 

bottleneck defining the species’ niche, providing a vital evidence base for both 

targeted conservation strategies and proactive, risk-based public health surveillance 

in endemic plague regions. 
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Висвітлення екологічних факторів формування ареалу тушкана великого: 

модель поширення виду та її значення для оцінки ризиків чуми» 

 

Сергій Межжерін, Володимир Титар, Ганна Рашевська, Аліна Потопа 

 
Резюме.  Тушкан великий (Allactaga major), ключовий гризун євразійських пустель і степів, має по-

двійне значення — як з точки зору охорони природи, так і епідеміології. Для розуміння основних чин-

ників його поширення ми розробили за допомогою алгоритму Maxent у рамках програми 'flexsdm' мо-

дель поширення виду (SDM), використовуючи набір кліматичних, ґрунтових та рослинних змінних у 

межах його євразійського ареалу. Інтерпретацію моделі проводили за допомогою значень SHAP 

(SHapley Additive exPlanations). Модель досить точно описала відомий ареал виду у межах від Східної 

Європи до Центральної Азії. Аналіз SHAP показав, що клімат, а не ґрунт чи рослинна біомаса, є осно-

вним фактором, що визначає ареалу. Головними предикторами виявилися: кількість опадів найпосуш-

ливішого тижня, річний діапазон температур та мінімальна температура найхолоднішого тижня, що 

визначають пороги толерантності до аридності, континентальності та виживання під час сплячки, від-

повідно. Особливо варто відзначити перший, який у часі  збігається з кінцем зими перед виходом тва-

рин зі сплячки. Графік залежності SHAP показав виразний нелінійний оптимум, де придатність сере-

довища за цим предиктором досягає піку приблизно при 6 мм. Це вікно, імовірно, є ключовим сигна-

лом для проростання однорічних ефемерів, які формують критичний харчовий імпульс для тварин пі-

сля сплячки. Цей зв'язок демонструється значною кореляцією (r = 0,68) між опадами найпосушливі-

шого тижня року та вегетаційною активністю (NDVI) у квітні. Це поглиблює розуміння факторів, що 

формують поширення виду: крім суто фізіологічної толерантності до навколишніх умов до обов'язко-

вої екологічної синхронізації. Отже, райони з високою передбачуваною придатністю, особливо в пів-

денному та східному Казахстані (зокрема, Жамбильська, Туркестанська та Алматинська обл.), окрес-

люють суцільний екологічний коридор, що представляє потенційні зони ензоотичних осередків чуми. 

Таким чином, створена SDM — це не лише прогностична карта, а інструмент для діагностики основ-

них абіотичних обмежень та ключового трофічного «вузького місця», що визначає нішу виду. Вона 

забезпечує життєво важливу доказову базу як для цілеспрямованих стратегій охорони, так і для про-

активного ризик-орієнтованого нагляду за громадським здоров'ям в ендемічних по чумі регіонах. 

Ключові  слова :  Allactaga major, моделювання поширення видів (SDM), екологічна ніша, фенологі-

чна синхронія, зоонозний ризик. 

 
Introduction  

The great jerboa (Allactaga major), a charismatic and ecologically significant rodent, inhabits 

the arid and semi-arid regions of Central Asia and Eastern Europe. The species is native to the 

steppes and northern deserts of eastern Ukraine and European Russia, through Kazakhstan and 

northern Uzbekistan to eastern Siberia and western Xinjiang. Its typical habitat is sparse grassland, 

sloping areas in ravines, road verges and field edges. It is also present in a range of arid and semi-

arid habitats, particularly those with some succulent plant growth [Tsytsulina et al. 2016]. 

As one of the largest jerboa species, it is distinguished by its powerful hind limbs for saltatory 

locomotion, elongated ears, and a long tail ending in a distinctive black-and-white tuft. These mor-

phological adaptations are quintessential for survival in open landscapes such as deserts, semi-

deserts, and dry steppes, where resources are patchy and environmental pressures are extreme. De-

spite its remarkable adaptations, A. major faces growing threats from habitat fragmentation and cli-

mate change, leading to a classification of Near Threatened on the IUCN Red List and highlighting 

the urgent need for a deeper understanding of its distributional ecology. 

A species’ geographic distribution is fundamentally shaped by the interplay of its physiological 

tolerances and the prevailing environmental conditions [Baselga et al. 2012; Bozinovic & Naya 

2015]. For species inhabiting extreme environments, climatic variables such as temperature, precipi-

tation, and aridity are often the primary determinants of survival and reproduction, effectively acting 

as ultimate filters on their potential range [Kindlmann et al. 2025].  
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Species distribution models (SDMs) provide a powerful correlative framework to quantify these 

relationships by linking known species occurrence records with environmental data to predict the 

likelihood of suitable habitat across a landscape [Elith & Leathwick 2009; Peterson et al. 2011; 

Rathore & Sharma 2023]. When built upon climatic predictors, these models not only delineate a 

species’ potential contemporary range but also offer critical insights into the fundamental niche—the 

set of conditions under which a species can persist in the absence of biotic interactions [Hutchinson 

1957].  

In the context of A. major, whose life history is so intimately tied to the challenges of aridity, a 

climate-based SDM is particularly well-suited. The species’ burrowing behaviour, which provides 

refuge from diurnal heat and winter cold, its diet primarily composed of plant material and seeds, 

and its water-conserving physiology all suggest that specific climatic thresholds govern its presence. 

Key factors likely include the temperature regime during its active season, the depth and duration of 

winter snow cover (which affects both insulation and food accessibility), and the amount and sea-

sonality of precipitation that drives primary productivity. By modelling these relationships, we can 

move beyond a simple map of occurrence points to a mechanistic understanding of the environmen-

tal factors that define the species’ home range at a macroecological scale. By projecting these mod-

els onto future climate scenarios, we can forecast range shifts, contractions, or expansions, providing 

critical data for pre-emptive conservation strategies. This study aims to construct a robust SDM for 

A. major to accurately model its contemporary home range and elucidate the key climatic factors 

that are the primary determinants of its distribution. 

Beyond its value for conservation, understanding the distribution of A. major is crucial due to 

its significant ecological role. In general, burrowing rodents in arid and semi-arid environments are 

considered ecosystem engineers due to their activities that modify soil structure and create ‘fertile 

islands’ [Mallen-Cooper et al. 2019]. These rodents are also highly responsive to climate change and 

human disturbance, making them valuable environmental indicators in ecosystems where they thrive 

[Dale & Beyeler 2001]. As a predominantly granivorous and herbivorous species, the greater jerboa 

influences plant community composition and seed dispersal. Its extensive burrowing activity aerates 

the soil, enhances water infiltration, and modifies the physical environment, creating microhabitats 

for other organisms. Furthermore, as an abundant prey item, it forms a critical trophic link for a vari-

ety of predators, including foxes, mustelids, and birds of prey (for instance, [Jánossy & Schmidt 

1970; Nedyalkov et al. 2014]). This position within the food web underscores its importance in 

maintaining the structural and functional integrity of its ecosystem. 

Perhaps of more immediate concern is the role of A. major in the epidemiology of zoonotic dis-

eases, most notably plague, caused by the bacterium Yersinia pestis. Jerboas, alongside with other 

wild rodents, are known natural reservoirs for plague in its endemic foci [Rametov et al. 2023]. 

Their burrow systems provide an ideal environment for flea vectors, which act as the primary trans-

mission agents. Epizootics, or outbreaks of the disease within animal populations, can lead to human 

cases when humans encroach upon these foci or come into contact with infected fleas or tissues. 

Consequently, the predicted distribution of A. major from an SDM can be directly overlain with 

known plague risk maps. Identifying areas of high climatic suitability for the jerboa can help pin-

point potential zones of sustained zoonotic transmission, thereby informing surveillance efforts and 

public health initiatives to mitigate the risk of spillover to human populations. 

Therefore, the primary objectives of this study are twofold. First, we aim to develop a robust 

SDM for the jerboa species using global climate data to accurately predict its current potential distri-

bution. Second, we seek to identify and rank the relative importance of key climatic variables in lim-

iting the species’ range, thereby elucidating the core environmental drivers of its distribution. The 

resulting model will serve as a vital tool for conservation planning and identifying potential habitats 

for future surveys. It also can contribute to a proactive framework for zoonotic disease risk assess-

ment and establishing a baseline for assessing the future impacts of climate change on this unique 

and vulnerable species. This research underscores the value of SDMs not merely as cartographic 

exercises, but as essential instruments for unravelling the ecological narratives that shape the spe-

cies’ niche [Soberón & Nakamura 2009; Soberón & Arroyo-Peña 2017]. 
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Materials and Methods 
 

Distributional Data 

We obtained presence records for A. major through personal systematic field surveys conducted 

in Ukraine, from existing literature data, and from public databases: the Global Biodiversity Infor-

mation Facility (URL) and the Ukrainian Biodiversity Information Network (UkrBIN URL). Subse-

quently we reviewed these datasets by deleting unreliable or ambiguous and excluding those whose 

geographical location was not precisely defined. The initial dataset compilation contained 628 occur-

rence points, encompassing locations across Eurasia. In the next step duplicate occurrences were 

removed by implementing a spatial protocol performed in SAGA GIS using the ‘Remove Duplicate 

Points’ module [Conrad et al. 2015]. Further, in order to reduce autocorrelation, we adhered to the 

recommendation implying that data points should be at least 2–3 cells apart (URL). Following 

Nuñez and Medley [2011], we measured the spatial autocorrelation of occurrences by calculating 

Moran’s I for multiple distance classes using the GeoDa software [Anselin et al. 2022]; values < 0.3 

were considered acceptable for building meaningful SDMs [Lichstein et al. 2002]. Using the 

‘PointsThinning’ module in SAGA GIS, the initial dataset was reduced to 583 record points. The 

longitude and latitude coordinates (WGS84 datum) of the sample records were stored in an Excel 

database and converted into CSV format for the establishment of the SDM models.  

 

Modelling approach 

The ‘flexsdm’ R (v. 3.3.3) modelling package [Velazco et al. 2022] was applied for projecting 

the potential geographic distribution of great jerboa across Eurasia. Spatial block partitioning was 

used to generate pseudo-absence and background points. Filtering the occurrence data was used to 

reduce sample bias by randomly removing points where they were dense (oversampling) in the envi-

ronmental and geographical spaces. The ‘flexsdm’ package offers a wide range of modeling options. 

Here, we tested out Maximum Entropy (Maxent) [Phillips et al. 2006]. This is one of the most popu-

lar SDM modelling methods. Maxent can construct simple to highly complex, nonlinear species–

environment relationships using various transformations of variables termed features and represented 

by a number of feature classes (FC) of which we tested linear, quadratic, product and hinge. To re-

duce overfitting, Maxent uses a regularization procedure to balance model fit with complexity, by 

penalising models based on the magnitude of their coefficients. Tuned models were built using regu-

larization multiplier values ranging from 0 to 4 with increments of 0.5 and all possible FC combina-

tions. 

The model’s predictive accuracy was measured using the widely recognised AUC statistic. 

AUC scores range from 0 to 1, with values closer to 1 reflecting strong discriminatory power in dis-

tinguishing habitat suitability [Fielding & Bell 1997] and the true skill statistic (TSS) where the val-

ue of >0.4 is considered good, with the range of 0.4–0.8 indicating ‘good’ performance; a score of 

>0.8 is considered excellent [Allouche et al. 2006; Zhang et al. 2015]. But whereas AUC remains a 

controversial criterion [Lobo 2008], for greater confidence we employed the continuous Boyce in-

dex, CBI [Boyce et al. 2002], one of the most reliable presence-only evaluation metrics, and also 

provided by the ‘flexsdm’ package. It is continuous and varies between −1 and +1. Positive values 

indicate a model that presents predictions that are consistent with the distribution of presences in the 

evaluation dataset, values close to zero mean that the model is not different from a random model 

[Hirzel et al. 2006]. 

Maps of habitat suitability in the GeoTIFF format were processed and visualised in SAGA GIS. 

Statistical data was analysed using the PAST software package [Hammer et al. 2001] and the R en-

vironment (https://www.r-project.org). 
 

Environmental variables 

Environmental variables focusing primarily on aspects of climate and soil were prepared to 

summarise important potential drivers of the jerboa’s ecological niche. Climate is one of the most 

http://www.gbif.org/
https://ukrbin.com/index.php?id=73874&action=distribution
https://damariszurell.github.io/EEC-MGC/index.html
https://www.r-project.org/
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influential environmental factors shaping species distributions. This is particularly true in dry re-

gions, where precipitation and temperature directly determine vegetation growth and water availabil-

ity, and consequently exert indirect effects on food resources and habitat conditions for rodents 

[Elith & Leathwick 2009]. Derivatives of temperature, precipitation, solar radiation and soil mois-

ture index were obtained from the CliMond archive [Kriticos et al. 2012]; http://www.climond.org. 

The CliMond dataset contains gridded historical climate data used at a 10′ resolution. 

Physical and chemical properties of soil (edaphic variation) can play an important role in pre-

dicting plant species occurrences [Liu et al. 2019; Shabani et al. 2025] and thus may indirectly influ-

ence jerboa distribution. In addition, it is recommended to incorporate abiotic factors (for example, 

soil covariates) into predictive frameworks of species responses to build a more accurate picture of 

its potential home range [Houlahan et al. 2016]. Therefore, we incorporated soil explanatory varia-

bles in our model from the SoilGrids database (version 2.0; https://soilgrids.org); [Poggio et al. 

2021]. Initially these were downloaded at a 250 m resolution but resampled for this analysis to 

match the climatic input layers. 

Our initial rationale identifies climate and soil as primary indirect drivers of the jerboa’s distri-

bution, although vegetation largely acts as the crucial proximate factor that translates those abiotic 

conditions into actual suitable or non-suitable habitat. On that account we considered to include such 

vegetation-related covariates as net primary productivity (NPP) (downloaded from the Socioeco-

nomic Data and Applications Center (SEDAC), http://sedac.ciesin.columbia.edu/es/hanpp.html) and 

greenness based on the normalised difference vegetation index (NDVI) (downloaded from the EDIT 

Geoplatform, [Lobo 2007]; URL). The first one directly measures the base of the food web, corre-

lates with overall ecosystem productivity and thus potential food and resource abundance available 

for the animals [Rodal et al. 2025]. The second one is a direct measure of vegetation vigour and cov-

er, has proven extremely useful in predicting herbivore and non-herbivore distribution; previously 

thought to be most useful in temperate environments, the utility of this satellite-derived index has 

been demonstrated even in sparsely vegetated areas [Pettorelli et al. 2011].  

Above these, in order to link the climate data to the ecological reality experienced by the jerboa 

and its food sources, we decided to employ growing degree days (GDD), one of the key metrics for 

understanding temperature-plant interactions and fundamental tool that quantifies thermal energy 

accumulation for predicting the timing of various plant development stages [Baskerville & Emin 

1969; Hatfield & Prueger 2015]. GDD is considered crucial for defining the growing season in tem-

perate and arid systems, determines plant growth periods and thus the timing of food availability 

[Boutin & Lane 2014]. Gridded GDD was downloaded from the Center for Sustainability and the 

Global Environment site, https://sage.nelson.wisc.edu/). 

To ensure consistency across datasets, all considered environmental variables were standardised 

to a 10′ resolution. 

 

Conditioning factors 

Commonly used approaches recommend removing correlated predictor variables before model-

ing to avoid multicollinearity, which is considered to affect model projections [Zhao et al. 2022]. 

There are several statistical packages offering functions that reduce collinearity in predictors.  

In one case we carried out a stepwise selection of environmental variables by calculating the 

variance inflation factor (VIF) using the library usdm in R [Naimi et al. 2014]. VIF values higher 

than 10 are considered to lead to problematic levels of multi-collinearity [Craney & Surles 2002], 

therefore factors with VIF values that exceeded 10 were not used in the model.  

In the second case we ignored removing correlated predictor variables because the benefits of 

using all available variables may outweigh the drawbacks of collinearity. Latest research indicates 

that modeling with correlated climate variables increases accuracy of predictions [Hanberry 2023]. 

Moreover, complex models such as Maxent take advantage of existing collinearity in finding the 

best set of parameters [De Marco & Nóbrega 2018]. 

https://soilgrids.org/
http://edit.csic.es/GISdownloads.html
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To further explore the impact of the considered above environmental factors, we employed a 

SHAP framework from XAI (i.e. eXplainable artificial intelligence) to rank and uncover the most 

influential drivers [Lundberg et al. 2018; Farooq et al. 2022]. With a SHAP approach there is no 

need to consider only uncorrelated environmental drivers [Nikraftar et al. 2025]. SHAP (SHapley 

Additive exPlanations) is a unified framework in explainable artificial intelligence used to interpret 

the output of any machine learning model by assigning each feature an importance value for a par-

ticular prediction. We post-processed the best model results with SHAP by comparing what a model 

predicts with and without the predictor for all possible combinations of predictors at every single 

observation. The predictors are then ranked according to their contribution for each observation and 

averaged across observations. Another useful item are dependence plots. In our case, the R package 

‘shap-values’ (https://github.com/pablo14/; author Pablo Casas) in a modified version was used to 

perform the SHAP analysis. The application of SHAP for understanding the influence of environ-

mental factors on species distribution has, until today, seen limited exploration, but is now being 

investigated more widely [e.g. Scavuzzo et al. 2022; Song & Estes 2023; Li et al. 2025; Buebos-

Esteve & Dagamac 2025]. 

 

Results and Discussion 

Eventually, we considered 46 environmental variables: 35 climate-related, 8 soil covariates, and 

3 related to plant biomass. Using this full dataset, we projected the potential geographic distribution 

of A. major across Eurasia (FC hinge, regularisation multiplier 2.0), with means ± standard devia-

tions of AUC and TSS reaching 0.73 ± 0.05 and 0.44 ± 0.06, respectively, and a continuous Boyce 

index of 0.85±0.19. Also, a selection of environmental variables was carried out by calculating the 

variance inflation factor (VIF) and factors with VIF values that exceeded 10 were not used in the 

model. The remaining factors included 8 climate-related, 7 soil covariates, and 2 related to plant bi-

omass.  

Repeatedly we projected the potential geographic distribution of A. major across Eurasia (FC 

linear, quadratic, hinge, product, regularisation multiplier 3.0); however, the performance of this 

particular model was poorer: AUC and TSS reaching only 0.63 ± 0.04 and 0.31 ± 0.03, respectively, 

and a continuous Boyce index reduced to 0.68 ± 0.32, therefore only the first model accounting for 

the full set of predictors was taken into further consideration. In general, this model adequately cap-

tures the distribution of A. major from Ukraine and Kazakhstan through to parts of Xinjiang and 

Mongolia (Fig. 1). 

In order to delineate species suitable and unsuitable habitats, the maximum training sensitivity 

plus specificity (MaxSS) threshold was used [Bharti et al. 2021]. Compared with other thresholds, 

MaxSS is a promising method for threshold selection when only presence data are available [Liu et 
al. 2013]. Under this threshold the resulting omission rate (OR) will vary but is usually in the 10–

20% range. Indeed, the OR of 16.60 ± 0.02% (mean ± SE) can be seen as a sign of good perfor-

mance [Liu et al. 2005], indicating that the used dataset and modelling algorithm effectively simu-

late A. major distribution. 

As mentioned above, A. major is a concern in the epidemiology of plague, particularly across 

the arid steppe and desert regions of Central Asia. Within its home range, it serves as a reservoir 

host, maintaining the bacterium in natural plague foci, where its burrows and flea populations facili-

tate transmission cycles that pose a risk to humans and other animals. Ukraine, however, is not with-

in the established, natural plague foci associated with the primary reservoir role of A. major. Specific 

rodent communities (primarily ground squirrels Spermophilus spp. and voles like Microtus) are re-

sponsible for maintaining Yersinia pestis in Ukraine’s steppe regions [Kosminsky & Marinin 1975].  

The core distribution of this species’ involvement in plague ecology is centred further east in 

the steppes and deserts of Central Asia (e.g. Kazakhstan). Authors like N. I. Kalabukhov or V. V. 

Kucheruk explicitly delineate the Volga–Ural, Caspian, and Central Asian foci (with jerboas among 

the key hosts) from the separate, smaller Black Sea and Azov steppe foci of Ukraine [Kalabukhov 

1960; Kucheruk 1965].  
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Fig. 1. The model output used to map habitat suitability for Allactaga major throughout Eurasia; colours show poten-

tial habitat suitability ranging from high (red) to low (blue); blue circles indicate jerboa occurrences (n = 345) filtered 

by the ‘flexsdm’ algorithm; the fuchsia-coloured line depicts the maximum training sensitivity plus specificity 

(MaxSS) threshold (0.44); 1—Ukraine, 2—Russian Federation, 3—Republic of Kazakhstan. 

Рис. 1. Результати моделювання на основі яких складена карта придатності середовища для Allactaga major 

на території Євразії; кольори показують потенційну придатність середовища від високої (червоний) до низь-

кої (синій); сині кружечки позначають місця знахідок тварин (n=345), відфільтровані алгоритмом 'flexsdm'; 

фуксієва лінія відображає порогове значення максимальної чутливості навчання плюс специфічність (MaxSS) 

(0.44); 1 — Україна, 2 — Російська Федерація, 3 — Республіка Казахстан. 
 

In this respect, one of the most extensive natural plague centres, or foci, is located in Central 

Asia, particularly in Zhambyl Oblast in southern Kazakhstan [Rametov et al. 2023]. The cited au-

thors employed a similar methodological approach, using species distribution modelling with the 

Maxent algorithm, and identified the natural plague foci located in this particular region, notifying 

from their professional view the high potential risk here of plague outbreak for rural towns and vil-

lages. According to our model, in areas of suitable habitat within Zhambyl Oblast the estimated suit-

ability for A. major averaged 0.59, maximum 0.77. In continuation of this, our model also points out 

to other affected regions in Kazakhstan primarily located in the southern, south-eastern, and eastern 

provinces at times mentioned in previous research reports [Aikimbayev et al. 2006; Koshkin et al. 

2007; Atshabar et al. 2015; Abdel et al. 2023]. Such key endemic zones include: Turkistan Oblast, 

formerly South Kazakhstan Oblast (averaged suitability 0.60, maximum 0.80), Almaty Oblast (aver-

aged suitability 0.58, maximum 0.74), Zhetisu Oblast, part of the historical Almaty region (averaged 

suitability 0.56, maximum 0.74), and Abai Oblast, part of the historical East Kazakhstan region (av-

eraged suitability 0.54, maximum 0.80).  

These results reveal a rather consistent pattern, with average suitability values across the identi-

fied endemic zones varying by less than 0.06, from 0.54 to 0.60. In epidemiological terms, this ho-

mogeneity suggests a continuous, high-risk ecological corridor where plague can be maintained and 

transmitted enzootically, with minimal geographical barriers to the spread of the bacterium among 

interconnected jerboa and other rodent populations. The consistency in habitat suitability implies 

stable and widespread reservoir host availability, which supports persistent plague foci and increases 

the potential for epizootic events that could spill over to other mammals, including humans. For 

monitoring and public health strategy, this means that surveillance cannot be geographically limited 

to a few hotspots; a region-wide, coordinated program across southern and eastern Kazakhstan is 

essential, as the risk most likely is broadly distributed. 

In conclusion, we can state that our model identifies potential plague reservoir zones, as high 

habitat suitability for A. major defines the ecological stage where the plague cycle can be main-

tained. The final step of human spillover, however, depends on additional actors—such as bridge 

vectors and hosts [Twigg 1978]—and human behaviour on that stage. 

Species distribution modeling serves not only a predictive function but also a diagnostic one, 

revealing the key environmental relationships that define a species’ niche. We employ SHAP (SHap-

ley Additive exPlanations) values to interpret our final models, ranking covariates by their mean 
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absolute SHAP value as a measure of global importance. At the Eurasian scale, the five most influ-

ential predictors from the dataset used for model construction were (in ranked order, Fig. 2): 

Bio14—Precipitation of driest week (mm) [35.4], Bio07—Temperature annual range (°C) [29.7], 

Bio06—Minimum temperature of coldest week (°C) [19.6], Bio15—Precipitation seasonality (C of 

V) [7.9], and Bio12—Annual precipitation (mm) [7.4]. [In square brackets: mean absolute SHAP 

value × 1000].  

As previously noted, our set of predictors consisted of environmental variables related to cli-

mate, soil and on the whole to plant biomass; however, climate variables (particularly extremes like 

Bio14 and Bio07) overwhelmingly dominate the model’s top predictors, while soil and biomass var-

iables ranked lower. This most obviously means that climate acts as a first-order, macro-scale filter. 

For a wide-ranging species like A. major climate sets across the vast Eurasian continent the absolute, 

non-negotiable boundaries of its fundamental niche and top variables exactly reflect this fact. In 

brief, Bio14 (Driest Week Precipitation) defines the absolute aridity tolerance—the physiological 

and food-resource bottleneck for survival; Bio07 (Temperature Annual Range) captures continentali-

ty where a high range is characteristic of the interior deserts and steppes it inhabits, excluding mari-

time climates with buffered temperatures; and Bio06 (Minimum Temperature of Coldest Week) de-

fines the cold tolerance limit for hibernation survival. These are ‘range-defining’ constraints and if 

these macroclimatic conditions remain unmet, the species cannot persist, regardless of local soil or 

vegetation conditions. 

Focusing deeper into the highest-ranked constraint, Bio14 surprisingly reveals a finely tuned 

ecological mechanism rather than a simple aridity filter. It should be taken into account that across 

the jerboa’s home range, the driest week of the year typically occurs in February–March just prior to 

the end of hibernation (April–May), with mean precipitation averaging approximately 5.27 mm dur-

ing this week period. The model’s interpretation via SHAP values shows that the biological response 

to this climate gradient is not a simple, linear increase (Fig. 3).  

Instead, the SHAP dependence plot reveals a distinct non-linear response. SHAP values are 

predominantly negative when Bio14 falls below a critical threshold of ~2–3 mm (indicating insuffi-

cient moisture to initiate the food pulse), rise sharply to peak positive values within the optimal of ~6 

mm range, and subsequently plateauing or declining as precipitation exceeds ~6 mm (maybe reflect-

ing detrimental effects of excessive moisture).  
 

 

Fig. 2. Absolute summary plot of the complete dataset, where 

the average absolute value of the SHAP values for each varia-

ble is taken in order to obtain a bar chart as a function of the 

contribution of each variable to the prediction of the model. 

Top 5 variables are ordered from most (top) to least (bottom) 

important.  

The x-axis represents the SHAP value×1000. The y-axis repre-

sents the variables used in the study, which refer to: Bio14—

Precipitation of driest week (mm), Bio07—Temperature annu-

al range (°C), Bio06—Minimum temperature of coldest week 

(°C), Bio15—Precipitation seasonality (C of V), and Bio12—

Annual precipitation (mm).  

Рис. 2. Зведена діаграма повного набору даних, де береться 

середнє абсолютне значення SHAP-значень для кожної 

змінної, щоб отримати стовпчикову діаграму як функцію 

внеску кожної змінної в прогнозування моделі. Топ-5 

змінних упорядковані від найбільш (зверху) до найменш 

(знизу) важливих.  

Вісь X представляє SHAP-значення ×1000. Вісь Y представляє змінні, використані в дослідженні, які відно-

сяться до: Bio14 — опади найпосушливішого тижня (мм), Bio07 — річний діапазон температур (°C), Bio06 — 

мінімальна температура найхолоднішого тижня (°C), Bio15 — сезонність опадів (коефіцієнт варіації), 

io12 — річна кількість опадів (мм).  
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Fig. 3. SHAP Dependence Plot. X-axis: Bio14—Precipitation of 

Driest Week (mm); Y-axis: SHAP value (impact on habitat suit-

ability).  

Рис. 3. Графік залежності SHAP. Вісь X: Bio14 — опади 

найпосушливішого тижня (мм); Вісь Y: значення SHAP 

(вплив на показники придатності середовища існування). 

 

The ~6 mm of precipitation in late winter is possibly the essential cue and resource for the ger-

mination and initial growth of the annual plants and ephemerals that form the bulk of the jerboa’s 

post-hibernation diet. This mechanistic link is strongly supported by our finding of a significant 

positive correlation (r = 0.68, p < 0.05) between precipitation in this driest period and the satellite-

derived greenness (NDVI) in April. This small but non-zero moisture window likely initiates plant 

growth so that fresh, nutrient-rich shoots and seeds are available precisely when jerboas emerge, 

emaciated and in urgent need of energy for reproduction.  

Our finding that habitat suitability for the jerboa depends on precipitation during the late-winter 

driest week aligns with the established ‘pulse-reserve’ paradigm in desert ecology [Noy-Meir 1973]. 

This precipitation pulse subsequently triggers the germination of annual plants, providing the essen-

tial food resources required for post-hibernation survival and reproduction, a mechanism document-

ed in other arid-adapted rodent assemblages [e.g. Ernest et al. 2000]. In another striking example 

J.H. Brown and coauthors have demonstrated that population sizes of granivorous rodents are direct-

ly driven by winter precipitation, which determines seed production of annual plants; low winter rain 

leads to a ‘seed crash’ and population declines [Brown et al. 1979]. The variable therefore acts as a 

climatic proxy for the trophic resource base critical during a key phenological bottleneck. 

In conclusion, the dominance of the variable ‘Precipitation of the Driest Week’ reveals that the 

jerboa’s range is not defined merely by where it can survive, but by where the climate reliably trig-

gers its essential food supply at the most critical annual bottleneck. This shifts the conceptual under-

standing from one of simple physiological tolerance to a more nuanced ecological synchrony con-

straint. Consequently, our SDM gains greater power and ecological relevance, as it captures this vital 

trophic link central to the species’ survival strategy. 
 

Conclusions 

This study successfully developed a robust Species Distribution Model (SDM) for the great jer-

boa (Allactaga major) across Eurasia, achieving its dual objectives of mapping potential habitat and 

elucidating the key climatic drivers of its range. The model, built using a comprehensive set of envi-

ronmental predictors, reliably identified the species’ core distribution from the dry steppes of 

Ukraine to the deserts of Central Asia and Mongolia. The primary outcomes and implications can be 

summarised as follows: 

1. Climate as the Primary Range Determinant: The analysis unequivocally identified climate, ra-

ther than soil or vegetation biomass, as the principal first-order filter shaping the continental-scale 
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distribution of A. major. The top predictors—Precipitation of the Driest Week (Bio14), Temperature 

Annual Range (Bio07), and Minimum Temperature of the Coldest Week (Bio06)—define the non-

negotiable macroclimatic thresholds of the species’ fundamental niche. These variables represent 

critical constraints related to aridity tolerance, continentality, and hibernation survival, respectively. 

2. Ecological Synchrony Over Simple Tolerance: A key finding was the specific role of Bio14 

(Precipitation of the Driest Week). Its importance, coupled with its timing in late winter (February–

March), reveals a mechanism more nuanced than simple aridity tolerance. The SHAP dependence 

plot demonstrated a distinct optimal range (~6 mm), indicating that this modest precipitation pulse 

acts as a ‘critical ecological trigger’. It synchronises the germination of annual plants with the jerbo-

as’ post-hibernation emergence, ensuring the availability of essential food resources during a severe 

energetic bottleneck. This shifts the understanding of the species’ distribution from a model of phys-

iological survival to one of obligate ecological synchrony. 

3. Implications for Plague Epidemiology: The model’s output provides a spatially explicit map 

of high-probability reservoir habitat for A. major. The consistent, high habitat suitability predicted 

across southern and eastern Kazakhstan delineates a continuous ecological corridor conducive to the 

maintenance of enzootic plague cycles. This offers a science-based tool for prioritizing surveillance 

and monitoring efforts in known endemic zones, such as Zhambyl, Turkistan, and Almaty oblasts. 

While high jerboa suitability defines the stage for plague persistence, the final risk of human spillo-

ver remains contingent on additional local factors, including bridge vector dynamics and human ac-

tivities. 

4. Methodological Advance: The application of SHAP (SHapley Additive exPlanations) values 

proved invaluable for moving beyond prediction to diagnostic ecological insight. This explainable 

AI (XAI) technique allowed for the clear ranking of variable importance and, crucially, the interpre-

tation of complex, non-linear species-environment relationships, such as the identified optimal pre-

cipitation window for Bio14. 

In summary, this research demonstrates that a climate-based SDM, interpreted through ad-

vanced explanatory frameworks, can transcend cartographic exercise to uncover the core ecological 

narratives limiting a species’ distribution. For the greater jerboa, this narrative is centred on a precise 

climatic cue that gates annual survival and reproduction. The resulting models serve as vital founda-

tions for both targeted conservation strategies for this Near Threatened species and proactive, risk-

based public health planning in regions where it functions as a key plague reservoir. Future work 

should focus on integrating these suitability maps with data on flea vector distributions and human 

land use to build comprehensive, dynamic risk assessment systems. 
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