general info about Theriologia Ukrainica

Theriologia Ukrainica

ISSN 2616-7379 (print) • ISSN 2617-1120 (online)

2022 • Vol. 23 • Contents of volume >>>


download pdfTytar, V. 2022. A species distribution model of the Antarctic minke whale (Balaenoptera bonaerensis). Theriologia Ukrainica, 23: 78–86.


 

title

A species distribution model of the Antarctic minke whale (Balaenoptera bonaerensis)

author(s)

Volodymyr Tytar (orcid: 0000-0002-0864-2548)

affiliation

I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine (Kyiv, Ukraine)

bibliography

Theriologia Ukrainica. 2022. Vol. 23: 78–86.

DOI

http://doi.org/10.15407/TU2309

   

language

English, with Ukrainian summary, titles of tables, captures to figs

abstract

The Antarctic minke whale (Balaenoptera bonaerensis) is regarded a Southern Hemisphere endemic found throughout the Southern Hemisphere, generally south of 60°S in austral summer. Here they have been routinely observed in highest densities adjacent to and inside the sea ice edge, and where they feed predominantly on krill. Detecting abundance trends regarding this species by employing visual monitoring is problematic. Partly this is because the whales are frequently sighted within sea ice where navigational safety concerns prevent ships from surveying. In this respect species-habitat models are increasingly recognized as valuable tools to predict the probability of cetacean presence, relative abundance or density throughout an area of interest and to gain insight into the ecological processes affecting these patterns. The objective of this study was to provide this background information for the above research needs and in a broader context use species distribution models (SDMs) to establish a current habitat suitability description for the species and to identify the main environmental covariates related to its distribution. We used filtered 464 occurrences to generate the SDMs. We selected eight predictor variables with reduced collinearity for constructing the models: mean annuals of the surface temperature (°C), salinity (PSS), current velocity (m/s), sea ice concentration (fraction, %), chlorophyll-a concentration (mg/m3), primary productivity (g/m3/day), cloud cover (%), and bathymetry (m). Six modelling algorithms were tested and the Bayesian additive regression trees (BART) model demonstrated the best performance. Based on variable importance, those that best explained the environmental requirements of the species were sea ice concentration, chlorophyll-a concentration and topography of the sea floor (bathymetry), explaining in sum around 62% of the variance. Using the BART model, habitat preferences have been interpreted from patterns in partial dependence plots. Areas where the AMW have particularly high likelihood of occurrence are East Antarctica, NE of the Weddell Sea, areas around the northern tip of the Antarctica Peninsula, areas bordering the Scotia–Weddell Confluence. Given the association of AMWs with sea ice, the pagophilic character of their biology makes them particularly vulnerable to climate change and a near-perfect biological indicator for tracking these changes.

keywords

Balaenoptera bonaerensis, Southern Ocean, species distribution modelling, Bayesian additive regression trees, biological indicator, climate change.

   

references

Ainley, D. G., K. M. Dugger, V. Toniolo, [et al.]. 2007. Cetacean occurrence patterns in the Amundsen and southern Bellingshausen sea sector, Southern Ocean. Marine Mammal Science, 23 (2): 287–305. https://doi.org/10.1111/j.1748-7692.2007.00109.x
Ainley, D., D. Jongsomjit, G . Ballard, [et al.]. 2012. Modeling the relationship of Antarctic minke whales to major ocean boundaries. Polar Biology, 35 (2): 281–290. https://doi.org/10.1007/s00300-011-1075-1
Allouche, O., A. Tsoar, R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43 (6): 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Amante, C, B. W. Eakins. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS, NGDC-24, 1–19. https://doi.org/10.7289/V5C8276M
Arndt, J. E., H. W. Schenke, M. Jakobsson, [et al.]. 2013. The International Bathymetric Chart of the Southern Ocean [IBCSO] Version 1.0—A new bathymetric compilation covering circum-Antarctic waters. Geophysical Research Letters, 40: 1–7. https://doi.org/10.1002/grl.50413
Assis, J, L. Tyberghein, S. Bosch, [et al.]. 2018. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology & Biogeography, 27 (3): 277– 284. https://doi.org/10.1111/geb.12693
Atkinson, A., V. Siegel, E. A. Pakhomov, [et al.]. 2008. Oceanic circumpolar habitats of Antarctic krill. Marine Ecology Progress Series, 362: 1–23. https://doi.org/10.3354/meps07498
Baines, M., C. R. Weir. 2020. Predicting suitable coastal habitat for sei whales, southern right whales and dolphins around the Falkland Islands. PLoS ONE, 15 (12): e0244068. https://doi.org/10.1371/journal.pone.0244068
Barlow, J. 2015. Inferring trackline detection probabilities, g[0], for cetaceans from apparent densities in different survey conditions. Marine Mammal Science, 31 (3): 923–943. https://doi.org/10.1111/mms.12205
Becker, E. A., D. G. Foley, K. A. Forney [et al.]. 2012. Forecasting cetacean abundance patterns to enhance management decisions. Endangered Species Research, 16 (2): 97-112. https://doi.org/10.3354/esr00390
Becker, E. A., K. A. Forney, J. V. Redfern, [et al.]. 2018. Predicting cetacean abundance and distribution in a changing climate. Diversity & Distributions, 25 (4): 626-643. https://doi.org/10.1111/ddi.12867
Booth, T. H., H. A. Nix, J. R. Busby, [et al.]. 2014. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Diversity & Distributions, 20 (1): 1-9. https://doi.org/10.1111/ddi.12144
Bosch, S. 2021. Package ‘sdmpredictors’. Retrieved from https://CRAN.R-project.org/package=sdmpredictors
Breen, P., S. Brown, D. Reid, [et al.]. 2016. Modelling cetacean distribution and mapping overlap with fisheries in the northeast Atlantic. Ocean & Coastal Management, 134: 140–149. https://doi.org/10.1016/j.ocecoaman.2016.09.004
Breiman, L. 2001. Random forests. Machine Learning, 45: 5–32. https://doi.org/10.1023/A:1010933404324
Brierley, A.S., P. G. Fernandes, M. A. Brandon, [et al.]. 2002. Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge. Science, 5561: 1890-1892. https://doi.org/10.1126/science.1068574
Busby, J. 1991. BIOCLIM – a bioclimate analysis and prediction system. Plant Protection Quarterly, 6 (1): 8–9.
Carlson, C. J. 2020 'embarcadero': Species distribution modelling with Bayesian additive regression trees in R. Methods in Ecology & Evolution. Early View, 1–9. https://doi.org/10.1111/2041-210X.13389
Chamberlain, S. 2018. 'spocc': Interface to species occurrence data sources. R package version 0.9.0. Retrieved from https://CRAN.R-project.org/package=spocc
Chavez-Rosales, S., D. L. Palka, L. P. Garrison, [et al.]. Environmental predictors of habitat suitability and occurrence of cetaceans in the western North Atlantic Ocean. Scientific Reports, 9 (5833). https://doi.org/10.1038/s41598-019-42288-6
Conrad, O., B. Bechtel, M. Bock, [et al.]. 2015. System for Automated Geoscientific Analyses [SAGA] v. 2.1.4. Geoscientific Model Development Discussions, 8 (2): 2271–2312. https://doi.org/10.5194/gmd-8-1991-2015
Cooke, J. G., A. N. Zerbini, B. Taylor. 2018. Balaenoptera bonaerensis. IUCN Red List Threat. Species 2018 e.T2480A50350661. Available at: http://www.iucnredlist.org
Demere, T. A. 2014. Family Balaenopteridae. In: Wilson, D.E., R. A. Mittermeier, editors. Handbook of the Mammals of the World. Sea Mammals. Lynx Edicions, Barcelona; 4: 242–299.
Duan, R.-Y., X.-Q. Kong, M.-Y. Huang, [et al.]. 2014. The predictive performance and stability of six species distribution models. PLoS ONE, 9: e112764. https://doi.org/10.1371/journal.pone.0112764
Elith, J., J. R. Leathwick, T. Hastie. 2008 A working guide to boosted regression trees. Journal of Animal Ecology, 77 (4): 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x
Ferguson, M. C., R. P. Angliss, A. Kennedy, [et al.]. 2018. Performance of manned and unmanned aerial surveys to collect visual data and imagery for estimating arctic cetacean density and associated uncertainty. Journal of Unmanned Vehicle Systems, 6 (3): 128–154. https://doi.org/10.1139/juvs-2018-0002
Fiedler, P.C., J. V. Redfern, K. A. Forney, [et al.]. 2018. Prediction of large whale distributions: a comparison of presence–absence and presence-only modeling techniques. Frontiers in. Marine Science, 5: 419. https://doi.org/10.3389/fmars.2018.00419
Flores, H., J. A. van Franeker, V. Siegel, [et al.]. 2012 The association of Antarctic krill Euphausia superba with the under-ice habitat. PLoS ONE, 7 (2): e31775. https://doi.org/10.1371/journal.pone.0031775
Friedlaender, A. S., P. N. Halpin, S. S. Qian, [et al.]. 2006. Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula. Marine Ecology Progress Series, 317: 297-310. https://doi.org/10.3354/meps317297
Friedlaender, A. S., J. A. Goldbogen, D. P. Nowacek, [et al.]. 2014. Feeding rates and under-ice foraging strategies of the smallest lunge filter feeder, the Antarctic minke whale (Balaenoptera bonaerensis). Journal of Experimental Biology, 217 (16): 2851–2854. https://doi.org/10.1242/jeb.106682
Guisan, A., T. C. Edwards, T. Hastie. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, 157 (2): 89–100. https://doi.org/10.1016/S0304-3800(02)00204-1
Hammond, P. S., K Macleod, P. Berggren, [et al.]. 2013. Cetacean abundance and distribution in European Atlantic shelf waters to inform conservation and management. Biological Conservation, 164: 107–122. https://doi.org/10.1016/j.biocon.2013.04.010
Herr, H., N. Kelly, B. Dorschel, [et al.]. 2019. Aerial surveys for Antarctic minke whales [Balaenoptera bonaerensis] reveal sea ice dependent distribution patterns. Ecology & Evolution, 9 (10): 5664–5682. https://doi.org/10.1002/ece3.5149
Hijmans, R. J., S. Phillips, J. Leathwick, [et al.]. 2011. Package ‘dismo’. Online: http://cran.r-project.org/web/packages/dismo/index.html
Hosmer, D. W., S. Lemeshow. 1989. Applied logistic regression, Wiley, New York, 1–307.
Kanaji, Y., M. Okazaki, T. Kishiro, [et al.]. 2015. Estimation of habitat suitability for the southern form of the short-finned pilot whale (Globicephala macrorhynchus) in the North Pacific. Fisheries Oceanography, 24 (1): 14–25. https://doi.org/10.1111/fog.12074
Kaschner, K., N. J. Quick, R. Jewell, [et al.]. 2012. Global coverage of cetacean line-transect surveys: status quo, data gaps and future challenges. PLoS One, 7: e44075. https://doi.org/10.1371/journal.pone.0044075
Kelly, N., D. Peel, M. V. Bravington. 2014. Distribution and abundance of Antarctic minke whales in sea ice regions of East Antarctica: a summary of results. IWC Scientific Committee Document SC/65b/IA15, 1–22.
Kuhn, M. 2008. Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 28 (5): 1–26. http://dx.doi.org/10.18637/jss.v028.i05
Lee, J. F., A. S. Friedlaender, M. J. Oliver [et al.]. 2017. Behavior of satellite-tracked Antarctic minke whales (Balaenoptera bonaerensis) in relation to environmental factors around the western Antarctic Peninsula. Animal Biotelemetry, 5 (23). https://doi.org/10.1186/s40317-017-0138-7
Liu, C., P. M. Berry, T. P. Dawson, [et al.]. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28 (3): 385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x
Lobo, J. M., A. Jimenez-Valverde, R. Real. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology & Biogeography, 17 (2): 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
Melo-Merino, S. M., H. Reyes-Bonilla, A. Lira-Noriega. 2020. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling, 415 (108837). https://doi.org/10.1016/j.ecolmodel.2019.108837
Murase, H., T. Kitakado, T. Hakamada, [et al.]. 2013. Spatial distribution of Antarctic minke whales [Balaenoptera bonaerensis] in relation to spatial distributions of krill in the Ross Sea, Antarctica. Fisheries Oceanography, 22 (3): 154–173. https://doi.org/10.1111/fog.12011
Naimi, B., M. Araujo. 2016. 'sdm': a reproducible and extensible R platform for species distribution modelling. Ecography, 39(4): 368-375. https://doi.org/10.1111/ecog.01881
Nicol, S. 2006. Krill, currents, and sea ice: Euphausia superba and its changing environment. BioScience, 56 (2): 111–120. https://doi.org/10.1641/0006-3568
Pearson, R. K. 2020. Exploratory Data Analysis Using R. Published June 30, 2020 by Chapman and Hall/CRC, 1–562.
Phillips, S. J., R. P. Anderson, R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190 (3-4): 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips, S. J., M. Dudik. 2008. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31 (2): 161–175. http://dx.doi.org/10.1111/j.0906-7590.2008.5203.x
Pitman, R. L., P. Ensor. 2003. Three forms of killer whales [Orcinus orca] in Antarctic waters. Journal of Cetacean Research and Management, 5 (2): 131–139.
Qiao, H., J. Soberon, A.T. Peterson. 2015. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods in Ecology & Evolution, 6 (10): 1126–1136. https://doi.org/10.1111/2041-210X.12397
Radosavljevic, A., R. P. Anderson. 2014. Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography, 41 (4): 629–643. https://doi.org/10.1111/jbi.12227
Risch D, T. Norris, M. Curnock, [et al.]. 2019. Common and Antarctic minke whales: conservation status and future research directions. Frontiers in Marine Science, 6: 247. https://doi.org/10.3389/fmars.2019.00247
Robinson, N. M., W. A. Nelson, M. J. Costello, [et al.]. 2017. A systematic review of marine-based species distribution models [SDMs] with recommendations for best practice. Frontiers in Marine Science, 4 (421). https://doi.org/10.3389/fmars.2017.00421
Savenko, O. 2020. Sightings of Antarctic minke whales, Balaenoptera bonaerensis, near the Kiev Peninsula [West Antarctica] during the summer period of 2019. Ukrainian Antarctic Journal, No 2: 68–74. https://doi.org/10.33275/1727-7485.2.2020.654
Siegel, V., J. L. Watkins. 2016. Distribution, biomass and demography of Antarctic krill, Euphausia superba. In: V. Siegel [ed.], Biology and ecology of Antarctic krill. Springer International Publishing, Cham, Switzerland, 21–100.
Smith, J. N., N. Kelly, I. W. Renner. 2021. Validation of presence only models for conservation planning and the application to whales in a multiple-use marine park. Ecological Applications, 31 (1): e02214. https://doi.org/10.1002/eap.2214
Tobena M, R. Prieto, M. Machete, [et al.]. 2016. Modeling the potential distribution and richness of cetaceans in the Azores from Fisheries Observer Program Data. Frontiers in Marine Science, 3: 202. https://doi.org/10.3389/fmars.2016.00202
Tynan, C. T., D. G. Ainley, I. Stirling. 2009. Sea ice: a critical habitat for polar marine mammals and birds. In: D. N. Thomas, G. S. Dieckmann (eds). Sea ice, Chichester: Wiley, 395–424.
Williams, R., N. Kelly, O. Boebel, [et al.]. 2014. Counting whales in a challenging, changing environment. Scientific Reports, 4 (4170). https://doi.org/10.1038/srep04170
Worby, A. P., J. C. Comiso. 2004. Studies of the Antarctic sea ice edge and ice extent from satellite and ship observations. Remote Sensing of Environment, 92 (1): 98–111. https://doi.org/10.1016/j.rse.2004.05.007
Zhao, X., H. Su, A. Stein, [et al.]. 2015. Comparison between AMSR-E ASI sea-ice concentration product, MODIS and pseudo-ship observations of the Antarctic sea-ice edge. Annals of Glaciology, 56 (69): 45–52. https://doi.org/10.3189/2015AoG69A588


 


to main page of journal >>>

created: 30.06.2022
updated: 05.09.2022

Locations of visitors to this page